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Abstract

In this paper we discuss several new techniques used
for the simulation of high-temperature superconductors
on parallel computers. We introduce an innovative
methodology to study the effects of temperature fluctu-
ations on the vortex lattice configuration of these ma-
terials. We have found that the use of uniform orthog-
onal meshes results in several limitations. To address
these limitations, we consider nonorthogonal meshes
and describe a new discrete formulation that solves the
difficult problem of maintaining gauge invariance on
nonorthogonal meshes. With this discretization, adap-
tiwe refinement strategies are used to concentrate grid
points where error contributions are large (in this case,
near vortex cores). We describe the algorithm used for
the parallel implementation of this refinement strategy,
and we present computational results obtained on the

Intel DELTA.

1 Introduction

High-temperature superconductors have the poten-
tial to be used in a wide variety of industrial appli-
cations including generators and motors, energy stor-
age, and magnetically levitating trains. One of the
most interesting properties of these superconductors is
that they allow normal and superconducting regions
to coexist in the same sample. Discrete packets of
external magnetic flux penetrate the sample, causing
penetration regions to have the properties of a normal
conductor. The rest of the superconducting sample is
protected from these normal regions through the for-
mation of vortices of superconducting electrons. It is
well known that the vortices arrange themselves in a
hexagonal lattice pattern to minimize the free energy
in the sample when the temperature is below a criti-
cal temperature, T,. Using the standard discretization
scheme on an orthogonal mesh, we have successfully
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modeled vortex lattice structure in three-dimensional
superconducting materials for temperatures 7" < T..
On the Intel DELTA, this approach obtained sustained
computational rates of 4.26 gigaflops with 512 proces-
sors [6].

A problem of more current interest to physicists
is the study of the effect of temperature fluctuations,
T > T,, on the vortex lattice configuration and struc-
ture. We have developed a new methodology for
studying these effects that uses derivative information
already calculated in the minimization of the free en-
ergy. We have been successful in isolating the charac-
teristic energies of the sample, but found that the use
of uniform, orthogonal meshes results in several lim-
itations, including restrictive problem sizes and sym-
metry constraints.

We may circumvent these problems by using adap-
tive mesh refinement on nonorthogonal meshes. To
take advantage of the computing power and large
memory capacity of state-of-the-art distributed mem-
ory architectures, we have developed the algorithms
and software necessary to perform adaptive refinement
on parallel computers [4]. We refine elements of the
mesh according to proximity to the vortex core. In this
way, grid points are concentrated where the solution
changes rapidly and are relatively sparsely placed in
areas where the solution is essentially constant. Thus
fewer total mesh points are used without compromis-
ing accuracy in the modeling of vortex core structure.

Although this approach is efficient in its use of mesh
points, the resulting discretized problem is both un-
structured and dynamic. In order to achieve good
load balancing and performance on parallel comput-
ers, the dynamic mesh must be partitioned (an as-
signment of unknowns and elements to processors) af-
ter each modification. We have developed a new geo-
metric partitioning algorithm that strives to minimize
both latency and transmission communication costs
on distributed memory architectures.



An additional consideration when using nonorthog-
onal meshes for this problem is that standard approx-
imation techniques fail to maintain a discrete form of
the gauge invariance found in the continuous model.
Therefore, we have developed a new discretization
scheme that maintains gauge invariance on nonorthog-
onal meshes. We use asymptotic analysis to show that
the free energy obtained using this approach converges
to the same value obtained when using standard dis-
cretization techniques on orthogonal meshes.

The remainder of the paper is organized as fol-
lows. First we describe the equations used to model
superconducting materials and present the methodol-
ogy used to incorporate the effects of temperature into
the model. We then give the new discrete formulation
of the problem appropriate for use on nonorthogonal
meshes. This discretization is used in conjunction with
adaptive mesh refinement to reduce the total num-
ber of grid points required to model the vortex lattice
structure. We describe the parallel implementation
of the adaptive mesh refinement and partitioning al-
gorithms. Finally, we present computational results
that show the efficiency of the adaptive mesh algo-
rithms within the framework of the superconductivity
problem on the Intel DELTA.

2 High-temperature superconductors

We use the highly successful Ginzburg-Landau
equations to model the vortex configurations in high-
temperature superconductors. An effective approach
to solving these equations numerically is a damped
Newton’s method. This method requires the compu-
tation of derivative information, which we use to in-
corporate the effects of temperature into the model.

2.1 Numerical model

To study the internal structures and lattice config-
urations of the vortices for temperatures T < T, we
minimize the nondimensionalized Ginzburg-Landau
free energy functional. The total free energy over the
volume €2 is given by

F(u) = F(¢,A) = (D)
Fcond(’l/)) + Fkin(’l/)a A) + Fﬂd(A) (2)

These three terms are generally known as the conden-
sation, kinetic, and field energy terms and are given
by the formulae
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The variable ¢ is the complex-valued order parameter
and A 1s the vector potential. The physical quantities
of interest are [+/|?, the local density of superconduct-
ing electron pairs, and B = V x A the magnetic field
induced by the motion of the electron pairs through
the sample. The parameter & gives the ratio of the the
characteristic length over which |¢|? varies (the cor-
relation length, &), to the characteristic length over
which B varies (the penetration depth, ).

An important property of this free energy func-
tional is that its value is unchanged by a gauge trans-
formation. That is, given (¢, A) and any scalar func-
tion y, we find that the pair (¢, A’) given by

v = el

leaves the free energy invariant. Thus, there are an in-
finite number of solutions to the optimization problem,
which complicates the computation of a minimizer.

We have found that an effective approach to com-
puting a minimizer u* = (¢*, A*) of the discretized
free energy functional is a damped Newton’s method.
Each step of Newton’s method requires computation
of the gradient vector, VF, and Hessian matrix, V2F.
These terms are used to compute a correction term,
s;, in the following manner:

A'=A-Vyx

(V2F +5;l)s; = =VF

W41 = W5 + 058,

where «; is computed by a line search. As a result
of the gauge symmetries of the problem, the Hessian
is highly singular at the solution (approximately one-
fourth of the eigenvalues are zero in two dimensions),
and we include the damping term, v;, to improve the
convergence of the method as described in Garner et
al. [3]. The computational kernel of this technique is
the solution of the damped Newton system—a large,
sparse linear system of equations. We do not explicitly
invert this system but use an iterative solver to obtain
an approximate (inexact) solution to the Newton sys-
tem. The BlockSolve package developed at Argonne
National Laboratory by Mark Jones and Paul Plass-
mann [5] is used for this purpose.

2.2 Fluctuation calculations

Given that one can compute minimizers of the free
energy functional using a Newton iteration, we note



that it is possible to incorporate the effects of tempera-
ture into the model. Temperature fluctuations around
the critical temperature, 7,, of a superconducting ma-
terial cause the vortices to move and vibrate around
the equilibrium hexagonal vortex configuration. If the
temperature is high enough, the hexagonal structure
is lost as the vortex lattice melts and vortices move
freely in the superconducting sample. In this case,
the value of the free energy functional is now depen-
dent on u and 7" and is incorporated in the following
way

Fu,T) = =TIin(2),

[ Plugne .

where the partition function, 7, is the integral over
all possible vortex configurations in the sample mul-
tiplied by the probability that each configuration will
occur. This probability is a function of F'(u) and T,
where F'(u) is the Ginzburg-Landau functional eval-
uated at the perturbed configuration u. It is impor-
tant to note that the negative sign in the exponential
term shows that the higher the free energy value of
the configuration, the less likely it is to occur. That
18, the most likely configurations will be those that re-
sult from small perturbations around the equilibrium
lattice. Hence, in this paper we consider small pertur-
bations of 17" around 7.,.

Traditionally the partition function, 7, is found nu-
merically by using Monte Carlo techniques, which re-
quire millions of evaluations of F'. For the problem
sizes considered here, each evaluation of F' requires
several minutes, so that the use of Monte Carlo tech-
niques results in a computationally intractable prob-
lem. Instead, we use the fact that the value of the free
energy functional for small perturbations, p;, 1s given
by the Taylor expansion

A

Fu"+p;) = F(u*)-I-VFPH-PiTVzFPi""”’ (8)

where F'(u*) is the minimum free energy of (2)-(5)
at T < 7., the linear term 1s zero since u* is the
optimal configuration, and V2F is the Hessian of the
energy functional evaluated at u*. If we choose p;
to be the orthonormal eigenvectors of the Hessian, v;,
the expansion in (8) reduces to a sum of the associated
eigenvalues A;

Fu* +ev;) = F(u*) + 2N +O(E) + - - (9)
Thus, the calculation of the free energy value for small
perturbations is reduced to spectral analysis of the
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Figure 1: Asymptotic results for the smallest four
nonzero eigenvalues of a single vortex superconduc-
tivity sample

Al-
though this is still a computationally intensive oper-
ation, it is tractable for the current high-performance
computing architectures.

We start with an orthogonal mesh and use the stan-
dard finite difference discretization of the free energy
functional (2)—(5) (see, for example, [3]). To find the
characteristic energies that most affect the partition

Hessian which must be performed only once.

function evaluation for a sample containing two vor-
tices, we use asymptotic analysis. The results for the
smallest four nonzero eigenvalues are shown in Fig-
ure 1. These are the smallest nonzero eigenvalues of
We

see that the eigenvalues asymptotically approach val-

the Hessian associated with each problem size.

ues independent of h. In particular, the four smallest
nonzero eigenvalues of this problem are

A = 020857111,
Ao = 432188615,
A3 = .T72728681,
A4 = 3.55252043.

Note that the eigenvalues increase several orders of
magnitude rapidly. Thus, only a few of the smallest
eigenvalues contribute significantly to the approxima-
tion of the partition function.



To eliminate the error associated with the discrete
nature of the numerical approximation, we must plot
and parameterize the phonon dispersion curves. These
curves give the infinite wavelength response to temper-
ature fluctuations and are critical to finding an accu-
rate representation of the partition function, 7. How-
ever, to obtain even four points on the phonon disper-
sion curves requires solution of a sample containing
256 vortices. Problems of this size using orthogonal
meshes require billions of grid points to adequately
resolve vortex structure and remain computationally
intractable.

3 Adaptive mesh refinement

To address the limitations of using an orthogonal
mesh, we use adaptive mesh refinement to concen-
trate grid points around vortex cores. In this way,
the total number of grid points is reduced. We use
nonorthogonal meshes and introduce a new discrete
formulation which maintains a discrete form of gauge
invariance on these meshes. With this discretization,
adaptive refinement strategies are used to concentrate
grid points where error contributions are large (in this
case, near vortex cores). We describe the algorithm
used for the parallel implementation of this refine-
ment strategy, and we present computational results
obtained on the Intel DELTA.

3.1 Nonorthogonal discrete formulation

We would like to significantly reduce the total num-
ber of grid points required to obtain an accurate repre-
sentation of the lattice configuration. This reduction
would in turn allow us to study the problem sizes of
interest in fluctuation calculations. To do this, we con-
centrate mesh grid points near the vortex core (where
the solution changes rapidly) and use relatively few
grid points far from the vortex cores.

On orthogonal meshes; nonuniform grid point spac-
ing requires that constraints be placed at nonconform-
ing nodes (nodes that lie on the edge of an element,
but are not a corner vertex). These constraints unnec-
essarily increase the work required to solve the system
and complicate implementation. Therefore, we choose
to use nonorthogonal, simplicial meshes. The question
now arises as to whether standard discretization tech-
niques maintain the important property of discrete
gauge invariance on these nonorthogonal meshes. We
introduce the following definition which gives the re-
quirements for a discretization to be considered gauge
invariant.

Definition 1 Let ¢ and A be the discrete representa-
tions of ¥ and A. In addition, let F be a discrete for-
mulation of the free energy functional, and let y be any
scalars defined on the same grid points as . Consider
the transformation v = ve’X. We define discrete
gauge tmvartance to be a property of the discretization
scheme that allows for a corresponding transformation

of A to some A’ such that F(y', A') = F(4, A).

We found that the standard finite-difference and
finite-element approximation techniques do not main-
tain gauge invariance on nonorthogonal meshes as de-
fined above (see [2]). Therefore, we have developed
a new discrete formulation for use on nonorthogonal
meshes that ensures that a discrete version of gauge
invariance is preserved. The unknowns of the new for-
mulation are a, b, and the phase, 8, where

9:/A~Td5

is associated with the links between the grid points
and T is the unit tangent vector such that nx T always
points into the domain. Let the vertices of a typical
triangle in the mesh be vy, v2, and vz and the links
opposite each vertex be 1y, 15, and 13. Let the area of
the triangle be Aa and the area of the entire domain
be Aq. We give the discretization of each of the three
terms in Equation (2) that ensures that the conditions
of Definition 1 are satisfied.

The condensation energy density in Equation (3) is
evaluated at the vertices of the triangle and averaged
to obtain a value for the entire element:

= An & 2 2
Fcond = % Z [_(a(vi) + b(vl) )+

i=1

e +00?| . (0)

For the field energy density (5), we use Green’s the-
orem to obtain

Fﬂd:/ /f2|V><A|2dA:7{ k%A - T|ds.
FAN [5FAN

The discrete representation of this equation using the

field variable 8 1s

_ 1 3 ?
Fra = = (/@E@(li)) . (11)

The kinetic energy density (4) is calculated at each
vertex in the triangle, and the average of these val-

ues 1s used to represent the energy of the element.



To maintain gauge invariance, we use a link variable
formulation similar to that used in the standard finite-
difference discretization. First, we rotate the element
so that all values of the order parameter are in the
same gauge basis. That is,

P(ve) = 1/;(02)6—2'9(13)’ b(vs) = 1/)(03)6—2'(9(13)4.9(11))’

1[)(”1) = (v )6_i(9(13)+9(11)+(12)).

In this case the gauge invariant differences along each
link are given by

Ky = (vs) = d(va), Ko =t(v1)— (v3),

Kz = (v2) —(v1).

The contribution to the kinetic term at the vertex vy
1s then

K(vi) = K32 4+ K213 4 215 - 13K, K5

The cross term 215 - 15 K5 K is not required for orthog-
onal meshes but is incorporated here to adjust for the
nonorthogonality of the triangle sides. Similar terms
for the other two vertices are summed to give the ki-
netic energy for the element,

3
- 1
Iip = ——— K(v;). 12
o = T ot 2 K (12)

To validate the new formulation, we used asymp-
totic analysis on a sample containing two vortices with
& = b to show the validity of the new discrete model.
The results obtained on uniform, orthogonal meshes
using finite differences were compared with those ob-
tained on uniform triangular meshes using the new
discrete formulation. As the element area Q(h?) ap-
proaches zero, we see in Figure 2 that condensation, ki-
netic, and total free-energy terms converge linearly to
the same result. The methods approach the solution
from different directions: finite differences from be-
low for the condensation and total free-energy terms,
the new formulation from above and vice versa for the
kinetic term. The kinetic energy is highest around
the vortex core, which, for the new element technique,
may be located anywhere in the element, not just at
grid points, as is the case in finite differences. In this
case the gradient term in Fp;, 1s not well approxi-
mated, and the kinetic energy term is always under-
estimated.
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Figure 2: Asymptotic results for the condensation, ki-
netic terms and final free-energy value

3.2 Parallel implementation

With the new discrete formulation, we may use
adaptive mesh refinement on simplicial meshes to con-
centrate grid points where error contributions are
large. In this case, the adaptive mesh tracks vortex
development and movement. In any simulation us-
ing adaptive mesh refinement techniques, maintaining
mesh quality is a primary concern. As the minimum
angle of the mesh decreases, the condition number of
the linear system grows, making solution more dif-
ficult. As the maximum final angle of the mesh ap-
proaches 7, the interpolation error in the approximate
solution increases.

One refinement technique that guarantees mesh
quality is the bisection algorithm of Rivara [8]. In



this algorithm, a triangle marked for refinement is di-
vided by connecting the midpoint of the longest side
to the opposite vertex. This approach creates a non-
conforming point in a neighboring triangle, and the re-
finement is propagated until all nonconforming points
are removed from the mesh (see Figure 3 for an illus-
tration). The algorithm guarantees that mesh angles
are bounded away from 0 and 7 if the angles in the
initial mesh are. In particular, the smallest angle of
the k —th mesh, % . is greater than or equal to one-
half of the smallest angle in the initial mesh 69, [9].
Using this result, we may also choose to bisect a tri-
angle selectively across a smaller side if the resulting
angles are greater than %92“»” and still maintain mesh
quality.

XN B B X

Figure 3: Propagation within the bisection algorithm

To implement the bisection algorithm on medium-
grain parallel architectures such as the Intel DELTA or
IBM SP1, we partition the vertices of the initial mesh
across the processors, as illustrated in Figure 4. Parti-
tion boundaries are indicated by dashed lines, and the
vertices and triangles owned by the center processor
are indicated by the black dots and shaded triangles.
In addition, each processor stores the nearest neigh-
bor information, indicated by clear dots and triangles
in the figure. Note that any given triangle is owned
by only one processor even though the vertices asso-
ciated with that triangle may be partitioned across
processor boundaries. A processor owns a triangle if
it owns two or more of the vertices of the triangle. If
all of the vertices of a triangle are owned by different
processors, triangle ownership is determined by a tie-
breaking procedure. Any vertex or triangle created in
the refinement procedure is owned by the processor
that created it.

Synchronization in the parallel refinement algo-
rithm must be managed so that there is a unique
global list of vertices and element neighbor informa-
tion is correct across the processors. To ensure that
these conditions are satisfied, we refine independent
sets of triangles in parallel. We define the indepen-
dent sets in the context of the dual graph of the mesh,
where the dual graph is defined to be D = (T, F),
where 7' is the set of triangles in the mesh and F' is
the set of links that connect two triangles if they share
a common edge. We say that a triangle, ¢;, is in the
independent set, Iy, if for every neighboring triangle

Figure 4: Partitioning of vertices and triangles across
Processors

t;eD

1. ¢; is not marked for refinement,
2. t; is owned by the same processor as t;, and

3. p(t;) < plts),

where p(t) is a random number assigned to the trian-
gle at its creation. We note that finding I, requires
no communication, since each processor stores the tri-
angle neighbor information.

Using independent sets, we now describe an algo-
rithm that avoids the synchronization problems men-
tioned above and has a provably good run time (for a
complete description of this algorithm see [4]).

k=20
Based on local error estimates, let Qg be the
set of triangles initially marked for refinement
While @, # do
Choose I, € D from Qj
Simultaneously refine the triangles in I,
Distribute updated element information
k=k+1
@1, 1s the set of new nonconforming triangles
Qr = Qr U(Qr—1— Ir-1)
Endwhile

The only communication required in this algorithm is
the distribution of updated element information to the
processors and the global reduction required to check
whether @}, i1s empty.

As grid points are dynamically added and deleted
in the mesh, we must determine good partitionings of
the mesh for distributed-memory architectures. We
define a good partition to be one in which the grid
points are evenly distributed to the processors in such
a way that interprocessor communication costs are
minimized. To reduce communication costs, we must
minimize the number of processor neighbors in the
partition and the number links crossing the partition
boundary. For uniform meshes, a good partitioning



of grid points may be determined a priori by the ge-
ometric domain. For unstructured adaptive meshes,
however, the partitioning cannot be predetermined be-
cause 1t changes with each new refinement of the mesh.

Several interesting techniques may be used to deter-
mine the partitioning of an unstructured mesh. Spec-
tral methods (see [7], for example) have the advantage
of global access to information about the graph to find
good separators at the cost of eigenvalue/eigenvector
computation. Although the eigenvectors generally do
not need to be found to much accuracy, spectral meth-
ods fail to utilize the geometric information known
about the vertices of the mesh.

Geometric information is used in bisection parti-
tioning algorithms such as the orthogonal recursive bi-
section (ORB) algorithm [1]. This algorithm makes an
initial cut to divide the grid points in half. Orthogonal
cuts are then made recursively in the new subdomains
until the grid points are evenly distributed among the
processors. Although this algorithm obtains good load
balancing and is inexpensive to compute, it ignores
the communication minimization problem. Long, thin
partitions may be created that have a high ratio of
links crossing the partition boundaries to total num-
ber of links in the partition.

To address this problem, we have developed a mod-
ification of ORB which we call the unbalanced recur-
sive bisection (URB) algorithm. Instead of dividing
the unknowns in half, we choose the cut that mini-
mizes partition aspect ratio and divides the unknowns
into %“ and ﬂ%ﬁ sized groups, where n is the total
number of unknowns, P is the number of processors,
and k € {1,2,..., P — 1}. This algorithm leads to an
even distribution of grid points with more balanced
partition aspect ratios. This tends to minimize the
communication costs in two ways. First, and most
important, partitions with good aspect ratios (close
to one) tend to have fewer partition neighbors and
hence fewer messages to send. Second, the percent-
age of mesh links crossing the partition boundary to
the total number of links in the nearly square parti-
tions is small compared with the long, thin partitions
generated by the ORB algorithm. Thus, the ratio of
computation to communication is increased compared
with the ORB algorithm, while execution time to com-
pute the partition is significantly less than for spectral
techniques.

4 Computational results

To adaptively refine the mesh around vortex core
singularities, we used the following refinement rule: a
triangle, ¢;, is refined if

min (|1/)(vl)|2 “Ap) < er,

where the e 1s a user-defined tolerance. The new
values of @ and b are obtained by linear interpolation at
the new grid point. The new phase, 8,,.,,, 1s chosen so
that the magnetic flux density in the two new triangles
is equal to the original flux density.

We now demonstrate the efficiency and scalability
of the refinement and partitioning algorithms within
the framework of the superconductivity problem. Be-
cause the current implementation of the adaptive re-
finement algorithms allows data to be associated with
vertices only, we have used a preliminary formulation
of the finite element given previously. However, the
computational results presented here would be quan-
titatively the same for the revised element. The re-
sults of four typical runs are shown in the table below
where P gives the number of processors and F indi-
cates the number of triangular elements in the final
solution mesh. The number of vortices in each sample
are 32, 48, 64, and 72 for 16, 32, 64, and 128 pro-
cessors, respectively. Thus, the problem size increases
in proportion to the number of processors used. The
amount of time required for refinement and partition-
ing is given as a percentage of total solution time.
These operations require less than one percent of the
execution time in all cases, and the solution of the
linear systems dominates the cost of the calculation.

Percent Percent Percent

P E Refine | Partition | Solution
Time Time Time
16 30484 .229 193 69.5
32 48416 .091 A17 86.3
64 | 111660 087 167 88.8
128 | 196494 181 452 86.0

Statistics on the partitions generated by the new
geometric partitioning algorithm, URB, are given in
the following table. The average aspect ratio for the
partitions is less than two in all cases, and the max-
imum aspect ratio is less than 3.6. These result in a
partition quotient graph whose average degree is be-
tween five and six, which corresponds to an average
of five to six messages sent per processor to transfer
nearest neighbor information. Finally, to estimate the
amount of data that must be transferred between pro-
cessors, we consider the percentage of edges that cross



partition boundaries to the total number of edges in
the partition. This number is less than 15 percent in
all cases.

Avg. Max. Avg. Max.
P | Graph | Graph | Aspect | Aspect Cross
Degree | Degree | Ratio Ratio Edges

Percent

16 5.31 7.00 1.47 2.88 6.72
32 5.40 8.00 1.89 3.55 8.32
64 5.64 8.00 1.34 2.49 10.0
128 5.71 9.00 1.81 3.55 13.7

The final triangular mesh of a 32 vortex problem
is shown in Figure 5. Vortex cores are indicated by
the location of the heavily refined areas of the mesh.
This problem was run on 64 processors of the Intel
DELTA, and partitions are indicated by the numbered
boxes. The partitions tend to split the vortex cores
to evenly distribute grid points and are nearly square
in most cases. As we refine the mesh around vortex
cores, the fact that the kinetic term is approaching
the asymptotic result from below causes the vortex to
drift toward regions containing larger mesh elements.
We are currently working to eliminate this problem
and are temporarily using Gaussian well pinning sites
to fix vortex position.
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